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Biology is complex. However, it is not clear how much of this complexity must necessarily translate into
complicated mathematical models of biological processes. Simple models can be appealing to physicists but
are usually deceiving for biologists. Complicated models, on the other hand, depend on too many parameters
whose values are frequently unknown. Therefore, complicated models, although in principle more realistic, can
lead to erroneous results if they are sensitive to these unknown parameter values. Intracellular calcium signals
provide an example of utmost biological importance in which the issue of “simple vs complex” can be
explored. In this paper we show that simple models describing the dynamics of intracellular calcium can be
directly inferred from experimental data, without no a priori information on unknown parameters. A similar
approach can be followed to study other reaction-diffusion systems. In spite of their simplicity, these models
can provide quantitative information on some of the processes that shape calcium signals, such as the calcium
current that underlies an experimental observation. This shows that simple models of biological systems are not
limited to qualitative descriptions.
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I. INTRODUCTION

Mathematical models of complex phenomena can be as
complicated as the system under study or can be much sim-
pler. The typical physicist’s approach has a tendency to sim-
plicity. The typical biologist’s approach, on the other hand,
pays much attention to the enormous diversity that small
details give rise to. It is hard to reconcile these two points of
view. Many of the simple models of biological systems that
physicists develop are commonly limited to a qualitative de-
scription. Such descriptions, which are at the realm of the
theory of dynamical systems, are very appealing to physicists
and applied mathematicians. However, they can be very de-
ceiving for biologists who are seeking more quantitative an-
swers. Is there any room for simple models to give quantita-
tive answers to biological questions? There have been very
remarkable examples that this is possible, such as the
Hodgkin-Huxley model of action potentials �1�. However,
the enormous amount of data that biological experiments are
producing makes the elaboration of simple but predictive
models even more difficult. How can we then bridge the gap
between a simplifying approach and the search for quantita-
tive results? In this paper we present a possible approach that
is applicable to the case of intracellular calcium �Ca2+� sig-
nals.

Intracellular calcium �Ca2+� dynamics provides a very in-
teresting example in which the issue of “simple vs complex”
can be investigated. Calcium ions are used for signaling pur-
poses by virtually all cell types, regulating functions as di-
verse as secretion, contraction, proliferation, and cell death
�2�. The variety of end responses produced by the different
spatiotemporal distributions of the Ca2+ concentration,
�Ca2+�, requires tight control of this distribution �3,4�. Since
prolonged elevations of the free cytosolic Ca2+ concentration
leads to cell death, cells have various mechanisms to trap or
remove free Ca2+. Ca2+ enters the cytosol through special-
ized ion channels located on the plasma membrane or on the

membrane of internal stores. Upon its entrance, Ca2+ dif-
fuses, binds to various mobile and immobile cytosolic buff-
ers �usually, proteins�, and is removed into internal stores or
extruded into the extracellular medium by pumps and ex-
changers �5�. The presence of this large variety of removing
mechanisms complicates the description of the intracellular
�Ca2+� dynamics. Namely, if one wants to describe all these
processes in detail, one is faced with a set of many coupled
reaction-diffusion equations �6�. This description gets even
more complicated if one wants to include the description of
the ion channels, whose conformational changes depend sto-
chastically on cytosolic �Ca2+� �7�. Furthermore, Ca2+ trans-
port between the cytosol and the other “compartments” �such
as the endoplasmic reticulum or the extracellular medium�
requires, in principle, a separate description of the dynamics
of �Ca2+� in each of them �8�. Clearly, the mathematical
model can become endlessly complicated. Ca2+ removal by
pumps and exchangers occurs on a slower time scale than
buffering �9,10�. Thus it is possible not to include them in the
description if one is interested in phenomena that occur
within a certain time scale. But even with this simplification,
the description still remains quite complicated. The main
question is then: how much detail is necessary to extract
quantitative information from experiments?

There are different types of experiments that provide par-
tial pictures of the intracellular �Ca2+� dynamics �11,12�. The
ones that give the most direct link to this dynamics are op-
tical techniques, in which fluorescent indicators are used to
visualize the spatiotemporal distribution of the Ca2+-dye
bound complex �13,14�. Although, inferring the �Ca2+� dis-
tribution from these observations may not be so direct, it can
be done within certain assumptions �15�. But still, even if
one is able to deduce how the free �Ca2+� is distributed
within the cell, it is hard to infer from these experiments how
much Ca2+ entered the cytosol, due to the presence of the
various removal mechanisms mentioned before. The combi-
nation of models and experiments is thus unavoidable to es-
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timate this Ca2+ current. Simple models might suffice to de-
scribe the observed distribution in a qualitative way.
However, the question arises of whether such simple models
are also able to provide quantitative information, such as the
amplitude and kinetics of the Ca2+ current, which is of most
interest for biologists. We think that simple models are in-
deed capable of providing quantitative answers to specific
questions. In particular, the algorithm we presented in �16� is
based on this assumption. The question is then how to obtain
these simple models.

One possible way to obtain a simple dynamical model is
to start from a complete �complicated� one and then reduce it
under certain assumptions �10,17–22�. We discuss in the next
section some approaches along this line. In the case of intra-
cellular Ca2+, however, detailed knowledge of a full model,
including quantitative information on the kinetics of the vari-
ous processes at work, may be unavailable. Therefore, this
step-by-step reduction is not always an option. In �23� we
explored the possibility of obtaining a dynamical model from
experimental observations. We discuss this “data-driven” ap-
proach in the next section too. The drawback of “data-
driven” models is that they could just be descriptive, if a
different model is obtained for each different observation.
Models with these characteristics would not be comprehen-
sive, but would be in an almost one-to-one correspondence
with a particular solution. Based on the theory of dynamical
systems, comprehensive models have been built from data in
the case of low dimensional dissipative systems �24–27�. In
�23� we applied a similar approach to the case of reaction-
diffusion systems. In this paper, we advance on the idea of
data-driven models and we show that in fact these models
may have predictive power and the ability to provide quan-
titative information in the case of Ca2+ signals.

Ca2+ signals involve Ca2+ entry in the cytosol, its subse-
quent transport in the presence of buffers, and its recapture
�5�. The buffer types, their concentrations and kinetics, and
the typical dynamics of the pumps and other recapturing
mechanisms may vary depending on the cell type. Different
amounts of buffers can also be expressed during different
stages of the same cell. Therefore a different mathematical
model or at least, a model characterized by different param-
eter values, should correspond to each cell type in a particu-
lar stage. On the other hand, the same cell can be subjected
to different patterns of Ca2+ entry which lead, in turn, to
different Ca2+ signals and end responses �3�. In oocytes, Ca2+

signals that are due to Ca2+ entrance through one or more IP3
receptor/Ca2+ channels �IP3R’s� have been observed to coex-
ist. Among them, blips, puffs, and global waves �28�. Ca2+

puffs themselves are highly variable, depending on the num-
ber of Ca2+ channels that open during the puff �29�. A math-
ematical model of Ca2+ puffs would then involve one set of
dynamical equations with some stochastic variable�s� deter-
mining Ca2+ entry. In this way, each puff would correspond
to a different solution of the same model �30�. The main
assumption that underlies our “data-driven” approach is that
the mathematical equations of the model, including the vari-
ous parameters that characterize them, can be inferred from
individual solutions. The immediate practical application of
this approach to Ca2+ signals is to obtain the amplitude and
kinetics of the Ca2+ entry that corresponds to each experi-

mental observation. In this type of application, Ca2+ entry is
an unknown �stochastic� function of time to be determined
from the data, which varies from signal to signal. The math-
ematical model that describes Ca2+ transport, buffering, and
recapture, on the other hand, is also unknown and to be de-
termined from the data, but should remain the same from
signal to signal. The time course of the Ca2+ entry is
solution-dependent. The model that describes the subsequent
Ca2+ dynamics is not. In this paper we show that a very
simple model, whose parameters can be inferred from data,
can in fact describe various observed Ca2+ signals, whenever
Ca2+ enters through one or several distinguishable spatially
localized regions �channels or clusters of channels�. We dis-
cuss why this simple model, which has analytic solution, is
suitable to describe these signals and what its limitations are.
One of the main features is that it does not require any a
priori information on the underlying processes that shape
Ca2+ signals, but extracts it from the data itself. On the other
hand, it is not merely descriptive, since it can be used to infer
Ca2+ currents. It is a simple model that yet provides quanti-
tative information, bridging the gap between the typical sim-
plifying approach of physicists and the needs of biologists.

The organization of the paper is as follows. In Sec. II we
briefly describe the complete set of evolution equations that
describe intracellular Ca2+ dynamics. In Sec. III we summa-
rize some of the previously reduced descriptions, the ones
that have been derived from the complete dynamical model
in different limiting regimes and the reduced description ob-
tained from data introduced in �23�. In Sec. IV we discuss in
more detail our “data-driven” approach, describing the sim-
pler description that we introduce in this paper. In Sec. V we
test this reduction by means of numerical simulations. The
reduction is tested with experimental data in Sec. VI. Finally,
a discussion is presented in Sec. VII, where also the conclu-
sions are summarized.

II. COMPLETE MATHEMATICAL MODEL

Upon its release in the cytosol, Ca2+ diffuses, reacts with
various buffers �among them, the dye that is used in optical
experiments� and is recaptured by different pumps. The re-
actions with the buffers are assumed to be of the form

Ca2+ + Bi �
koff,i

kon,i

CaBi, �1�

where kon,i and koff,i are the kinetic rate constants for the
particular buffer Bi. It is further assumed that the free and
bound forms of the buffer, Bi, and CaBi, respectively, diffuse
at the same rate, DB,i, and that their total concentration,
�B�T,i, is uniformly distributed. Thus the evolution equations
for this system can be written as

��Ca2+�
�t

= �
i=1

N

Ri + DCa�
2�Ca2+� + M + QCa, �2�

��CaBi�
�t

= − Ri + DB,i�
2�CaBi�, 1 � i � N , �3�

where
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Ri = − kon,i�Ca2+���B�T,i − �CaBi�� + koff,i�CaBi�, 1 � i � N

�4�

is the reaction term between Ca2+ and the buffer Bi, and the
sum goes over all the �N� buffers that affect the cytosolic
calcium dynamics; DCa is the free diffusion coefficient of
Ca2+ ��220 �m2/s �31��; and QCa is the Ca2+ source. All
other Ca2+ sequestration mechanisms �among them, the
Ca2+-ATPase that pumps Ca2+ back into internal stores� are
included in M. Usually, M is regarded as a function of �Ca2+�
exclusively and we do so in this paper.

III. PREVIOUSLY EXPLORED REDUCED DESCRIPTIONS

A. Reduced descriptions obtained from models

In this section we briefly describe some of the reductions
of Eqs. �2� and �3� that have been derived in different limit-
ing regimes.

The rapid buffering approximation �RBA� �10,17–20� is
based on the assumption that the reactions with the buffers
occur much faster than any other process, so that Ca2+ and
the buffers are locally in chemical equilibrium. In this way,
Eqs. �2� and �3� can be approximated by a single equation for
�Ca2+� of the form

��Ca2+�
�t

= ���DCa + �
i

�iDB,i	�2�Ca2+�

− 2��
i

�iDB,i

Ki + �Ca2+�	 � �Ca2+� · ��Ca2+�

+ M + QCa
 , �5�

�CaBi� =
�B�T,i�Ca2+�
Ki + �Ca2+�

, �6�

where

� = �1 + �
i

Ki�B�T,i

�Ki + �Ca2+��2	−1

, �7�

�i =
Ki�B�T,i

�Ki + �Ca2+��2 . �8�

Equation �5� can be rewritten as a reaction-diffusion equation
with a concentration-dependent diffusion coefficient �32�.

Another reduction, first introduced in �21� and revisited in
�18�, is the so-called excess buffer approximation �EBA�. In
the EBA it is assumed that there is always enough free buffer
available at any given point so that �B�T,i− �CaBi���Bi�rest

= �B�T,i / ��Ca2+�rest /Ki+1���B�T,i. This approximation has
been shown to be valid when mobile buffers are in high
concentration and/or when the source amplitude is small
�10,18,21�. Under the EBA, Eqs. �2� and �3� can be approxi-
mated by a single equation for �Ca2+� of the form

��Ca2+�
�t

= − ��
i

kon,i�B�T,i	��Ca2+� − �Ca2+�rest�

+ DCa�
2�Ca2+� + M + QCa. �9�

In this approximation the �Ca2+� dynamics is described by a
single evolution equation.

Under similar assumptions as those of the EBA, a better
approximation was derived in �22�. The equations, in this
case, are obtained by linearization around the resting solu-
tion. We will refer to this reduction as the Naraghi and Neher
approximation �NNA�. Defining ��Ca2+�= �Ca2+�− �Ca2+�rest

and ��CaBi�= �CaBi�− �CaBi�rest, the linearized version of
Eqs. �2� and �3� is

���Ca2+�
�t

= − ��
i

�i

�i
	��Ca2+� + �

i
� 1

�i
��CaBi�	

+ DCa�
2��Ca2+� +

�M

��Ca2+�
��Ca2+� + QCa,

�10�

���CaBi�
�t

=
�i

�i
��Ca2+� −

1

�i
��CaBi� + DB,i�

2��CaBi� ,

�11�

where �i=1/ �koff,i+kon,i�Ca2+�� and �i was defined in Eq. �8�.
Both parameters are now evaluated at �Ca2+�rest. In this ap-
proximation the dynamics is described by a system of linear
equations that can be solved analytically for the case of a
point source.

B. Reduced descriptions obtained from data

In �16,23� we introduced a different approach which con-
sists of deriving simple dynamical equations directly from
the data, instead of obtaining them from a complete math-
ematical model under various assumptions. Let us define R
=�iRi+M. While M is a function of �Ca2+� exclusively, each
term Ri is a nonlinear function of �Ca2+� and �CaBi�. We
argued in �23� that R(�Ca2+��r , t� , �CaBi��r , t�) could be ap-
proximated by a function of �Ca2+� and its space and time
derivatives. Due to the dissipative nature of the processes
involved, we assumed that the lowest order derivatives com-
patible with the symmetry of the problem suffice to provide
a good enough description. Namely, we assumed that R
could be approximated by

R = g
��Ca2+�

�t
+ f�2�Ca2+� + h���Ca2+��2 + k , �12�

where g, f , h, and k are unknown functions of the free cal-
cium concentration, �Ca2+�. The approach then consists of
determining the unknown functions directly from the data.
Inserting Eq. �12� into Eq. �2�, we then obtain a single evo-
lution equation for Ca2+ to describe the dynamics. The main
assumption that underlies the use of this approach to infer
Ca2+ currents as done in �16� is that the functional form of R
�which is deduced from one data set that corresponds to a
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particular Ca2+ source� remains the same regardless of the
source term, QCa. Namely, we assume that R describes the
dynamics of the removal processes in all circumstances. In
this paper, we simplify the functional form of R, taking into
account that the sources that we deal with are highly local-
ized in space, and analyze the limits of validity of this as-
sumption.

IV. DATA DRIVEN REDUCTION IN THE PRESENCE OF
LOCALIZED SOURCES

Many intracellular Ca2+ signals involve Ca2+ entry
through isolated channels or highly localized clusters of
channels �33,34�. Thus it is of relevance to study the dynam-
ics described by Eqs. �2� and �3� when QCa is a point source
�or a spherical source of very small radius�. For this type of
sources, the solutions of Eqs. �2� and �3� become almost
stationary soon after the source turns on in the region around
the source, while the source strength remains constant, as
explained in �17,18,35–38�. This is clear, for example, in the
case of the diffusion equation in the presence of a point
source. In such a case, for each distance, r, there is a time,
t*�r�, after which �Ca2+��r , t� is approximately given by the
stationary solution, �Ca2+�s. For example, if r / �4Dt��
=0.05, �Ca2+��r , t� and �Ca2+�s differ by about 5% for t� t*.
If r=0.6 nm, which is approximately the size of the pore of
an IP3R, it is t*=0.00072 ms for D=50 �m2/s �some typical
effective Ca2+ diffusion coefficient in the cytosol �31�� while
t*=0.00012 ms for D=300 �m2/s �the free Ca2+ diffusion
coefficient in the cytosol �31��. If we take r as the typical size
of a single cluster of IP3R’s in the oocyte, r=50 nm �39�, we
obtain t*=0.005 ms for D=50 �m2/s and t*=0.83 ms for
D=300 �m2/s. The same type of behavior also occurs with
the solutions of Eqs. �2� and �3� in the presence of localized
sources, as discussed in �17,18,35–38� and illustrated in Fig.
1. These curves were obtained via numerical simulations of
Eqs. �2� and �3� in the presence of one buffer with kon
=1 �M−1 s−1, koff=10 s−1, �B�T=100 �M, DB=50 �m2/s

and with a 0.5 pA source that remained on for all t�0 and
that was uniformly distributed over a sphere of radius Rf
=0.5 �m and zero outside. We observe that, for each r, there
is a time, t*, after which �Ca2+� remains practically constant.
Furthermore, the whole solution becomes time-independent,
including the various buffer concentrations.

We observe in Fig. 1 that the stationary solution,
�Ca2+�s�r�, that is approached as time goes by, is a monotoni-
cally decreasing function of the position, r. Thus the function
�Ca2+�s�r� can be inverted to obtain r��Ca2+�s�. Given that
�Ca2+��r , t���Ca2+�s�r� for t� t* and that t* is relatively
small, at least close enough to the source, we can assume
that, after a short transient, there is a unique function,
r��Ca2+��, with �Ca2+� the concentration given by Eqs. �2�
and �3�. Given that the various buffer concentrations become
also approximately constant, we can assume that R�r , t�
��iRi+M in Eq. �2� can be approximated by a function of r
or, equivalently, by a function of �Ca2+�.

Assuming that the functional form of R��Ca2+�� is rela-
tively insensitive to the amplitude and temporal course of the
Ca2+ source, then we may use the function R��Ca2+�� in Eq.
�2� to obtain a single dynamical equation that describes the
evolution of �Ca2+�:

��Ca2+�
�t

= R��Ca2+�� + DCa�
2�Ca2+� + QCa. �13�

Assuming that R is only a function of �Ca2+� is a simplifica-
tion of the previously proposed ansatz �Eq. �12�� which ap-
proximately holds in real experiments where localized Ca2+

signals are observed, as illustrated in Fig. 2.
We show in Fig. 2 R�r , t� vs �Ca2+�r , t��, for two sets of

experimental data. The free �Ca2+� in these cases and R�r , t�
are obtained as done in �16� and briefly explained in the
Appendix. Figure 2�a� corresponds to experiments in which
Ca2+ enters the cytosol from the extracellular medium
through voltage-gated Ca2+ channels that are expressed in the
plasma membrane �40�. Figure 2�b� corresponds to
IP3-evoked Ca2+ puffs obtained in Xenopus Laevis oocytes
with the same protocol as in �41,42�, in which Ca2+ enters
the cytosol from the endoplasmic reticulum through IP3R’s.

0 1 2 3 4
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−1

10
0

r (µm)

[C
a2+

] (
µM

)
t=7ms
t=9ms
t=11ms
t=13ms

FIG. 1. Calcium concentration in the presence of one buffer and
a localized source obtained with numerical simulations of Eqs. �2�
and �3�. Spatial profiles are shown at four different times, as indi-
cated. Notice that the vertical axis is in logarithmic scale.
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FIG. 2. R=�iRi+M as a function of the free calcium concentra-
tion, �Ca2+�, for different data sets �circles� and its linear fittings
�solid line�. �a� Experimental data from calcium sparklets in Xeno-
pus oocytes. �b� Experimental data from IP3-mediated Ca2+ puffs in
Xenopus oocytes.
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All data sets correspond to fluorescence images obtained
with a confocal microscope in linescan mode. Figure 2 dis-
plays the results for five signals in �a� and four signals in �b�.
We see from Fig. 2 that, within the resolution of these ex-
periments, R can be very well approximated by a function of
�Ca2+�. Furthermore, this function is approximately linear, as
shown by the straight lines that correspond to best linear fits
to the experimental points.

Assuming that R��Ca2+�� can be approximated by a linear
function of �Ca2+�, Eq. �13� reduces to

��Ca2+�
�t

= − ���Ca2+� − �Ca2+�0� + DCa�
2�Ca2+� + QCa,

�14�

where � and �Ca2+�0 are constant parameters to be deter-
mined from the data.

An appealing feature of the linear approximation Eq. �14�
is that it can be solved analytically for very localized sources
QCa. In particular, its solution in an infinite medium and in
the presence of a point source located at r=0 that turns on at
t=0 is �e.g., see �43,44��

�Ca2+� = �Ca2+�0 +
	

4
DCar
exp�− r/��F�r,t� , �15�

where �=DCa/� and

F�r,t� =
1

2�erfc� r
4DCat

− �t	 + exp�2r

�
	

�erfc� r
4DCat

+ �t	� . �16�

The solution of Eq. �14� in the case of a source that is uni-
formly distributed over a sphere can be found, for example,
in �45�.

Depending on how fast the stationary solution is reached,
the data-driven linear reduction can be more or less accurate,
as we show in Fig. 3. The curves in these figures correspond
to two sets of numerical simulations of Eqs. �2� and �3�, both
of them with a single buffer �N=1�, no other recapturing
mechanism �M =0�, and a source of the form:

QCa = �I if r � Rf and ts � t � ts + td,

0 otherwise,

 �17�

where =5.2�103 �M �m3/ � 4
3
Rf

3pC�. The two sets have
different kinetic rate constants, kon and koff, but the same
dissociation constant, Kd=koff /kon. The simulations were
started from a uniform equilibrium distribution of all species
at a resting Ca2+ concentration of 50 nM. The model equa-
tions were solved numerically using a finite difference
scheme on a spherically symmetric grid of length Rt=6 �m,
with spatial and temporal steps of 0.1 �m and 10−5 s, respec-
tively. The total integration time was Tt=150 ms. All param-
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FIG. 3. Sequence of comparative plots for different sets of numerical simulations with a single buffer and a source that is uniformly
distributed over a sphere of radius 0.5 �m and is on during a finite time interval. �a� and �b� kon=100 �M−1 s−1, koff=1000 s−1; �c� and �d�
kon=1 �M−1 s−1, koff=10 s−1. The other parameter values are given in Table I. �a� and �c�: R�r , t� vs �Ca2+��r , t� at times during which the
source is on �3 ms� t�100 ms in �a� and 3 ms� t�13 ms in �b�� and at five values of r �0, 0.5, 0.6, 0.7, and 1 �m�. The points obtained
at the each value of r are connected with solid curves. The arrow added to one of them in �a� shows the way in which the values are “visited”
as time goes by. The dashed curve �indistinguishable in �c�� corresponds to the relationship between R and �Ca2+� at the stationary solution
that the full solution approaches with time. The open circles in �a� correspond to times t=3, 4, 6, 8, 23, and 100 ms and are plotted to
illustrate how the stationary relationship is approached with time. The straight line corresponds to the best linear fit of all the points, R�r , t�
vs �Ca2+��r , t�. �b� and �d� Temporal profiles of �Ca2+� at r=0.6 �m �right outside the source� obtained with numerical simulations of the full
set of reaction-diffusion equations �solid line�; of Eq. �14� with � and �Ca2+�0 determined from the linear fit displayed in �a� and �b� �thick
dashed line�; of the evolution equations in the EBA �thin dashed line�, in the RBA �dotted line�, and in the NNA �dashed-dotted lines�.
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eter values �from which we have dropped the superscript
identifying the buffer for simplicity� are listed in Table I.

We plot in Figs. 3�a� and 3�c� R�r , t� vs �Ca2+�r , t�� for
five values of r �the distance from the center of the source�
and all times, t, during which the source is on. Figure 3�a�
corresponds to kon=100.0 �M−1 s−1 and Fig. 3�c� to kon
=1.0 �M−1 s−1. We observe that there is a well-defined func-
tion R��Ca2+�� for all times in Fig. 3�c�. Furthermore,
R��Ca2+�� is very well approximated by a linear function.
The assumption that there is a unique function R��Ca2+�� for
all times is not that good in Fig. 3�a�. As expected, it does
hold at the stationary solution �shown with dashed lines in
the figure�. However, the numerical solution differs from the
stationary one by less than 30% at t=8 ms and by less than
12% at t=23 ms, as illustrated by the open circles that cor-
respond to a discrete set of times. Therefore, after a transient
that lasts �10 ms �which in several experiments is not re-
solved�, we can assume that the removal term, R, can be
approximated by the function R��Ca2+�� that characterizes
the stationary solution with at most a 20% error. In this case,
however, the function is nonlinear. In any case, we decided
to approximate R�r , t� vs �Ca2+�r , t�� by a linear function and
obtain the parameters � and �Ca2+�0 that provided the best
linear fit �shown in Figs. 3�a� and 3�c� with a solid line�.
With these parameters, we then obtained the solution of Eq.
�14� in the presence of the same source and compared it with
the numerical solution of the full set of reaction-diffusion
equations �RDE�. We show a comparison of these solutions
in Figs. 3�b� �for kon=100.0 �M−1 s−1� and �d� �for kon
=1.0 �M−1 s−1�.

We show in Figs. 3�b� and 3�d� the time course of �Ca2+�
right outside the source �r=0.6 �m� obtained with the nu-
merical simulations of Eqs. �2� and �3� �solid lines� and using
the solution of Eq. �14� with the linear fit determined in Figs.
3�a� and 3�c� �thick dashed lines�. We observe that both so-
lutions are indistinguishable in the case of Fig. 3�d�, for
which the linear approximation of R�r , t� vs �Ca2+�r , t�� is
good at all times and points �as shown in Fig. 3�c��. In Fig.
3�b�, on the other hand, in spite of the apparently poor qual-
ity of the linear fit shown in Fig. 3�a�, the solution obtained
within this linear approximation differs from the real solution
by less than 16% for 3� t�28 ms �a typical sparklet dura-
tion� and by less than 23% for 3� t�63 ms �a typical “puff”
duration�. We can observe that the solution of the linear ap-
proximation reaches its stationary state earlier than the full
solution. The stationary solution, on the other hand, is under-
estimated by the linear fit. This last problem can be partially

solved by using the nonlinear function R��Ca2+�� that de-
scribes the stationary solution, but that results in a larger
difference between the solution of the RDE and of the linear
model during the transient behavior �data not shown�. In
spite of the discrepancies, the linear “data-driven” model
provides better descriptions than those of model-derived re-
duced descriptions which result in single evolution equations
for �Ca2+�, such as the RBA and the EBA described in Sec.
III A. This may be observed in Figs. 3�b� and 3�d�, where we
show the solutions obtained using the RBA �dotted lines� and
the EBA �thin dashed lines�. In particular, we can observe in
Fig. 3�b� that the EBA underestimates the stationary solution
by a larger amount than the linear “data-driven” model. This
occurs because, in this case, the EBA overestimates the frac-
tion of �Ca2+� that is removed by buffers. The solutions of
the EBA, of the linear “data-driven” model, and of the full
system are indistinguishable in Fig. 3�d�, where the rate of
�Ca2+� removal by buffers occurs at a relatively slow pace.
The RBA, on the other hand, performs much worse in this
case because the buffer is not fast enough. We can also ob-
serve in Figs. 3�b� and 3�d� that the NNA �dashed-dotted
lines� provides the best description in all cases. Although this
model can be solved analytically, it is not characterized by a
single evolution equation for �Ca2+� and depends on many
parameters. Therefore its practical implementation requires a
fairly detailed knowledge of the processes at work.

Figure 3�d� shows that Eq. �14�, with the parameters �
and �Ca2+�0 obtained from the fitting in Fig. 3�c�, can also
describe the Ca2+ dynamics after the source is turned off �t
�13 ms�. For this reason, we decided to investigate which
data points provide parameters, � and �Ca2+�0, that best de-
scribe the �Ca2+� distribution of the real system and how this
solution compares with the one that is obtained if a nolinear
fit of R��Ca2+�� is used instead. To this end, we approximated
the R vs �Ca2+� relationship of the data points of Fig. 3�a� in
various ways: we used a linear fit of all the data points, a
linear fit of the data points that correspond to 63 ms� t
�100 ms, so that the solution is relatively close to the sta-
tionary one, and a nonlinear fit of the stationary solution
using a fifth degree polynomial. For the linear fittings we
obtained the parameters � and �Ca2+�0 in Eq. �13� and inte-
grated it numerically, in the presence of the same source as
the original simulation. We could observe that, after the
source is turned off, all these approximate solutions decay
faster than the solution of the full system of equations �data
not shown�. This is an indication that the data-driven linear
model can describe the dynamics after the source is turned
off only when Ca2+ buffering does not occur too fast. There
are no significant differences between using all the data
points and using only points near the stationary solution to
do the fitting. This is good for the application to real data for
which it is not always possible to distinguish when the re-
lease of Ca2+ has stopped. In the following section, we use
linear fittings of all the available points.

We also studied what happened in the case of time-
dependent sources. If a sinusoidal source is used in the simu-
lations instead of the steplike one displayed in Eq. �17�, R is
still well fitted by a linear function of �Ca2+� if the same
parameters as the ones in Fig. 3�c� are used �not shown�. The

TABLE I. Parameters used in the simulations with only one
buffer.

DCa 220 �m2/s DCaB 50 �m2/s

�B�T 100 �M �Ca2+�rest 0.05 �M

kon
B 100.0–1.0 �M−1 s−1 koff

B 1000.0–10.0 s−1

Rf 0.5 �m ts 3 ms

td 10–80 ms I 0.5 pA

Rt 1.5 �m Tt 20–100 ms

�r 0.1 �m �t 10−5 s
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error of the reconstructed calcium signal varies between 2%
and 14% depending on whether �Ca2+� is high or low at the
corresponding r and t. We conclude that the linear approxi-
mation is valid even if the source varies with time. The va-
lidity of the lineal reduction approximation is mainly limited
by kinetics of the buffers reactions.

V. TESTING THE DATA-DRIVEN LINEAR REDUCTION
WITH NUMERICAL SIMULATIONS

We now perform a systematic analysis of the differences
between the solutions of the data-driven linear model, Eq.
�14�, and of the full set of equations �2� and �3� for a variety
of parameter values. To this end, we have done numerical
simulations of Eqs. �2� and �3�, with two or more buffers,
one of which, B�B1, corresponds to the dye that is used in
fluorescent experiments, with a recapturing mechanism of
the form:

M = −
k1�Ca2+�m

k2
m + �Ca2+�m , �18�

and a source of the form Eq. �17�.
The results of these simulations were then compared with

the corresponding solution of Eq. �14�, in which � and
�Ca2+�0 were obtained from a linear fit of R vs �Ca2+�, as
done in the previous section. To quantify the differences be-
tween the full calculation, RDE, and the reduced linear one,
we defined the error:

��t� =
� ��Ca2+�RDE − �Ca2+�linear�dr

� �Ca2+�RDEdr

, �19�

in which the domain of integration is chosen as either the
whole space or the region with �r�Rf� or without �r�Rf� a
source.

Figures 4 and 5 correspond to simulations with only one
additional buffer, E�B2, which has the properties of the ex-
ogenous Ca2+ buffer, EGTA. In these simulations the source
is on from t=3 to 13 ms, unless otherwise noted. The other
parameters are listed in Table II.

In Fig. 4 we analyze how the error depends on the dye
reaction constants, kon

B and koff
B . These two parameters are

varied from 100 to 1000, in the corresponding units
��M−1 s−1 for kon

B and s−1 for koff
B �. The other simulation pa-

rameters are kept as in Table II. Figures 4�a� and 4�b� show
error contour lines at t=12 ms and t=13.5 ms, respectively,
which correspond to times before and after the source turns
off. For a given value of kon

B , the error increases with koff
B ,

while it decreases if koff
B is fixed and kon

B is increased. In terms
of KD

B =koff
B /kon

B , KD
B we observe that the error mainly in-

creases with KD
B . In Fig. 4�a�, the error is less than 0.1 �which

corresponds to a 10% error�, while in Fig. 4�b� it goes up to
0.4. Figures 4�c� and 4�d� show error contour lines at t
=12 ms but performing the integral in Eq. �19� inside �c� and
outside �d� the source �0�r� =Rf =0.05 �m and 0.05�r
� =Rt=1.5 �m, respectively�. We obtain errors that are less

than 2% integrating only inside the source, and get up to
16% integrating only outside. We may conclude that the ap-
proximation is more accurate while the source is on, and gets
worse as we move out of the source, with an error that is
always smaller than 16%, for this particular model and
choice of parameters.

In Fig. 5�a� we analyze the error dependence on the Ca2+

and dye diffusion coefficients, DCa and Ddye, respectively,
varying them between 50 and 320 �m2/s. The other simula-
tion parameters are kept as in Table II. Error contour lines
are shown for t=12 ms. The error is not affected much by
changes in DCa, while it decreases when Ddye is increased.
This is a positive result since in real experiments one has no
control on DCa but, conversely, one can choose different dyes
to improve the approximation. Even in the worst case, the
error is less than 5%.

In Fig. 5�b� we analyze the error dependence on the mag-
nitude, I, and duration, td, of the source. The current is in the
range 0.1–1.9 pA, which is typical for localized Ca2+ puffs
in oocytes �46�, and the duration, in the range 1–10 ms, is
somewhat smaller than typical puff durations �29�. The other
simulation parameters are kept as in Table II. Error contour
lines are shown, in this case, at t=4 ms, a time at which the
source is on for all the values of td considered. In this case
the error is not affected by changes in td, but they do increase
as I increases. As before, even in the worst case, the error is
less than 5%. We have also studied how the errors change
when Rf �the source radius� or �BT� �the total dye concentra-
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tion� are changed. Varying Rf from its value in Fig. 5�b�,
0.05 to 0.1 �m, we obtained errors in the range 0.01–0.06.
Varying �BT� from 40 to 100 �M does not change the errors
obtained for �BT�=40 �M �data not shown�. We show in
Figs. 5�c� and 5�d� plots of R�r , t� vs �Ca2+��r , t� and of
�Ca2+� as a function of time and space for a particular set of
parameter values �the one indicated with an asterisk in Fig.
5�b��. We show in Fig. 5�c� the points obtained from the

numerical simulation of the full set of equations �circles� and
its best linear fit �solid line�. Figure 5�d� compares the RDE
�solid line� and linear �dashed line� �Ca2+� profiles. The up-
per panel is a temporal profile for r=0; lower panels are
spatial profiles at t=4 ms �left� and t=10 ms �right�. The
differences between both solutions are indistinguishable in
the scale of the figure.

We have also analyzed the behavior of R in a more real-
istic model of intracellular Ca2+ dynamics, more specifically,
in the modified version of the model of Ca2+ sparks in frog
skeletal muscle �6� studied in �16�. All parameters of the
model are described in �16�. In this case we used a source of
the form Eq. �17� with Rf =0.05 �m, and different values of
td and I. The parameters Rt, Tt, �r, and �t are as in Table II.

In Fig. 6�a� we analyze the error dependence on the mag-
nitude, I, and duration, td, of the source, as done in Fig. 5�b�,
but for this new model. The errors, in this case, are more
sensitive to changes in td than in Fig. 5�b�. While in that case
the errors were in the range 0.01–0.05, they are now in the
range 0.08–0.16 �which means less than 16%�. Figures 6�b�
and 6�c� are similar to Figs. 5�c� and 5�d� but obtained for
this new model and for the parameter values indicated with

0 5 10 15

−8

−6

−4

−2

0
x 10

4

[Ca2+] (µM)

R
 (

µ
M

/s
)

0.5 1 1.5

2

4

6

8

10

I (pA)
t d

 (
m

s
)

0
.0

1
0
.0

1

0.01

0
.0

1
0
.0

1

0.01

0.01

0
.0

2
0
.0

2

0.02

0.02

0
.0

3

0.03

0.03

0
.0

4

0.04

0
.0

5

100 200 300

100

200

300

D
Ca

 (µm2/s)

D
d

y
e
 (

µ
m

2
/s

) 0.
01

0.
01

5

0.015
0.015

0.02
0.02

0.025
0.025 0.025

0.03
0.03 0.03

0.04
0.04 0.04

0.05 0.05

0.02

0 5 10 15

−8

−6

−4

−2

0
x 10

4

[Ca2+] (µM)

R
 (

µ
M

/s
)

  3    7   11   
0

10

20

t (ms)

[C
a

2
+
] 
(µ

M
)

0 0.1 0.2
0

10

20

r (µm)

[C
a

2
+
] 
(µ

M
)

0 0.1 0.2
0

10

20

r (µm)

(a) (b)

(c) (d)
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TABLE II. Parameters used in the simulations with dye and one
extra buffer.

DCa 220 �m2/s DCaB 50 �m2/s

DCaE 113 �m2/s �Ca2+�rest 0.05 �M

�B�T 40 �M �E�T 1000 �M

kon
B 100.0 �M−1 s−1 koff

B 400.0 s−1

kon
E 1.5 �M−1 s−1 koff

E 0.3 s−1

Rf 0.05 �m td 10 ms

I 0.1 pA k1 50.0 �M s−1

k2 0.184 �M m 3.9

Rt 1.5 �m Tt 20 ms

�r 0.01 �m �t 10−7 s
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an asterisk in Fig. 6�a�. The differences between the RDE
�solid line� and the linear solutions are more noticeable in
this case than in that of Fig. 5�d�, but the errors never exceed
16%.

VI. ABILITY OF THE LINEAR DATA-DRIVEN MODEL TO
BE INDEPENDENT OF Ca2+ CURRENT PROPERTIES

Figures 4, 5, and 6�a�–6�c� were done comparing the nu-
merical solution of the full model with the one of Eq. �14�
with parameters � and �Ca2+�0 that were determined from
the linear fitting of R vs �Ca2+� for each simulation sepa-
rately. In other words, each point in Figs. 4, 5�a�, 5�b�, and
6�a� was obtained using a different pair of parameters
�� , �Ca2+�0�. It is reasonable that � and �Ca2+�0 change with
buffer parameters. However, if � and �Ca2+�0 �and, therefore,
R� depend on the current properties �like I and td�, then the
“data-driven” linear model is only descriptive: a different
model is obtained for each different observation. As we have
mentioned in the Introduction, our goal is to obtain a single
data-driven model that can describe Ca2+ dynamics in the
presence of different Ca2+ sources. A reduced model with
this property can be used to infer the �Ca2+� current from a
given fluorescence image. Furthermore, it allows the simul-
taneous use of data coming from several Ca2+ signals, which
is highly desirable given the relatively small amount of in-
formation that each isolated signal usually provides. In this
section we investigate the ability of the model defined by Eq.
�14� with a single pair of values, � and �Ca2+�0, to reproduce
solutions corresponding to �Ca2+� currents of various kinetics
and amplitudes.

To this end we integrated Eq. �14� with the currents, I, and
time durations, td, explored in Fig. 5�b� but using always the
same set of parameter values, � and �Ca2+�0, obtained from
one of the simulations of this figure. Actually,
we repeated this test choosing the values �� , �Ca2+�0�
obtained for the largest and smallest values of I and td
�i.e., for v1= �I=0.1 pA; td=1 ms�, v2= �0.1 pA;10 ms�, v3

= �1.9 pA;1 ms�, and v4= �1.9 pA;10 ms��. We did the same
with the simulations of Fig. 6�a�. We show in Fig. 6�d� the
error contour lines obtained for this second model using the
values �� , �Ca2+�0� determined from the simulation with I
=0.1 pA and td=1 ms, which gives the largest errors. Com-
paring Figs. 6�d� and 6�a� we observe that, in the worst case,
the error increases from 0.16 to 0.24. For the model of Fig.
5�b�, the error increases from 0.05 to 0.1 in the worst case
�that corresponds to using v4 as the fitting simulation�. From
these results we conclude that the linear data-driven model
�14� with a single set of parameters, �� , �Ca2+�0�, is able to
reproduce the �Ca2+� distribution that arises due to currents
of different intensities and durations, with errors that are less
than 25% in the worst case, at least for the range of currents
and durations that characterize localized Ca2+ signals in oo-
cytes.

VII. TESTING THE DATA-DRIVEN LINEAR REDUCTION
WITH REAL DATA

We now test the data-driven linear model with experimen-
tal signals that arise due to Ca2+ entry through voltage gated

channels expressed in the plasma membrane of Xenopus lae-
vis oocytes �40�. The signals were obtained with optical tech-
niques using a confocal microscope in line-scan mode and
the fluorescent Ca2+ indicator fluo-4 dextran �low affinity�.
The fluorescent images provide information on the spa-
tiotemporal distribution of the Ca2+-bound dye, �CaB�, which
is assumed to be proportional to the fluorescence intensity
�16�. The distribution of free �Ca2+� can be obtained from the
reaction term in Eq. �4�, as done in �16� and briefly explained
in the Appendix. The data analyzed in this section corre-
sponds to the one displayed in Fig. 2�b�.

We first analyzed the data as done in �16� to estimate the
Ca2+ source, QCa, that gave rise to each signal. We then ob-
tained the parameters, � and �Ca2+�0, that characterized the
best linear fit of the R��Ca2+�� relationship �the straight line
in Fig. 2�b��. We then chose one particular �localized� signal
and approximated the Ca2+ source, QCa, by a piecewise con-
stant �in space and time� one, QCa, chosen so as to give the
same mean current as QCa. Finally, we integrated Eq. �14�
using the source, QCa, and the values � and �Ca2+�0 of the
linear fit. We show in Fig. 7 the temporal and spatial profiles
of �Ca2+� obtained in this way �dashed lines� comparing
them with the ones determined directly from the experimen-
tal image �solid lines�. The temporal profiles in �a� corre-
spond to r=0 and the spatial profiles in �b� correspond to the
two temporal peaks in �a�, with errors of �14% and �6%,
respectively. Similar results were obtained for the other sig-
nals.

The results in this section show that a single set of param-
eter values, � and �Ca2+�0, characterizes a variety of experi-
mental Ca2+ signals �see Fig. 2�b�� and that the linear data-
driven model that uses these values is able to reproduce the
experimentally determined �Ca2+� distributions. This holds as
long as the signals arise from sufficiently localized Ca2+

sources. We thus expect the linear data-driven model to pro-
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vide an accurate means to infer Ca2+ currents from fluores-
cent images that is easier and simpler to automatize than the
algorithm discussed in �16�.

VIII. CONCLUSIONS

In this paper we have shown that the dynamics of intrac-
ellular Ca2+ in the presence of localized sources can be ac-
curately described by a single evolution equation for �Ca2+�
whose parameters can be directly inferred from individual
solutions and are relatively insensitive to the Ca2+ source
properties. We have argued that the success of this approach
relies on the localized nature of the Ca2+ sources. Therefore
we expect similar “data-driven models” to be applicable in
reaction-diffusion systems in which the entrance of the reac-
tants into the reaction region is spatially localized to almost a
point.

In the presence of very localized �� point� sources, the
solutions of reaction-diffusion systems become almost sta-
tionary very quickly in the region around the source. For
typical Ca2+ signals, this time is �1 ms within a radius of
�1.5 �m around the Ca2+ point of entry. In these stationary
solutions, �Ca2+� is a decreasing function of the distance, r,
to the point of release. Thus when the solution of the system
becomes almost stationary, it is possible to invert the relation
between r and �Ca2+� and write any function of r �among
them, the terms that characterize Ca2+ removal in the cyto-
sol� as a function of �Ca2+�. In real Ca2+ signals observed in
Xenopus laevis oocytes the relationship between the sum of
all the Ca2+ removal terms and �Ca2+� is approximately lin-
ear. Thus the dynamics of �Ca2+� in the presence of a very
localized source, many buffers and pumps, can be described
in terms of a single linear evolution equation for �Ca2+�.

In this paper we have shown that the two parameters that
characterize the sum of all the Ca2+ removal terms can be
obtained from individual solutions. We have probed this “lin-
ear data-driven model” both with numerical simulations and
with experimental Ca2+ signals observed in Xenopus Laevis
oocytes. In the case of the simulations, we determined that
the solution of the “linear data-driven model” reproduced the
�Ca2+� spatiotemporal distribution observed with less than
25%. The ability to reproduce the experimentally observed
Ca2+ signals �with less than 14%� implies an experimental
validation for the reduced description that we introduce in
this paper. The simplicity of the model, which is character-
ized by very few parameters and does not require an a priori
detailed knowledge of the processes that affect Ca2+ dynam-
ics, makes it of wide applicability for the analysis of real
Ca2+ signals.
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APPENDIX: HOW TO OBTAIN †Ca2+
‡ AND R FROM

EXPERIMENTAL DATA.

The steps that must be followed in order to obtain �Ca2+�
and R from experimental data are largely described in �16�.
Here we present a brief summary of the whole process.

Fluorescent images provide information on the distribu-
tion of Ca2+-bound dye, �CaD�, whose evolution equation
can be assumed to be �under some standard hypothesis�

��CaD�
�t

= − Rdye + DD�2�CaD� , �A1�

where DD is the dye diffusion coefficient and Rdye is the
reaction term:

Rdye = − kon�Ca2+���D�T − �CaD�� + koff�CaD� . �A2�

We can compute the time and spatial derivatives of �CaD�
from the experimental records. Line scan images only con-
tain data along one spatial dimension, x. Assuming that the
release of Ca2+ has spherical symmetry �this is satisfied, in
particular, if the release occurs over a very small region that
can be treated as a point and that there is nothing else around
that can break this symmetry�, the solution only depends on
time and the distance, r, from the site of release. �2�CaD�
can, therefore, be computed using only the information along
the direction x. Calculating �2�CaD� and ��CaD� /�t we can
obtain from Eq. �A1� the value of Rdye at every spatial point
and time:

Rdye = DD�2�CaD� −
��CaD�

�t
. �A3�

Using Eq. �A2� we can then obtain a spatio-temporal series
of the variable of interest, �Ca2+�:

�Ca2+� =
koff�CaD� − Rdye

kon��D�T − �CaD��
. �A4�

Equation �13� has two unknowns, R �Rdye is one of the terms
in the sum inside R� and the Ca2+ source, QCa. The fact that
Ca2+ release is localized in space and time implies that QCa
vanishes away from the source and everywhere in space
when Ca2+ release ceases. Thus there are points of the ex-
perimental record where QCa=0 and R is then the only un-
known term in Eq. �13�. R is then reexpressed as a function
of �Ca2+�. Now, in a given experiment, �Ca2+� will be larger
in the region with QCa�0 than in the region where there is
no source. However, the “table” of R values as a function of
�Ca2+� is obtained in the region with QCa=0. This means that
we will not have direct information on the values of R for the
larger �Ca2+� values that occur in the region with QCa�0.
One possibility to overcome this difficulty is to extrapolate
the fitting of R vs �Ca2+�, in order to obtain an estimate of its
value for these larger �Ca2+�, using the information for the
lower concentrations. In the experiments analyzed in this pa-
per R vs �Ca2+� has an approximately linear behavior, so the
extrapolation is a reliable procedure.
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